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We point out biases in the algorithms used by Itzkovitzet al. [Phys. Rev. E68, 026127(2003)] to assess
their approximate formulas for the average number of occurrences of certain subgraphs in random graphs with
prescribed degree sequences.
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Itzkovitz et al. [1] give approximate theoretical formulas
for the average number of occurrences of certain small sub-
graphs in random graphs with prescribed degree sequences.
To assess the accuracy of these approximate formulas, they
randomly generate 1000 graphs with prescribed degrees and
directly count the number of occurrences of the subgraphs.
They do this twice, in the first case using the algorithm of
Newmanet al. [2] to generate multigraphs with prescribed
degrees, and in the second case using a modified version of
this algorithm, as described in Miloet al. [3], to generate
simple graphs with prescribed degrees[4]. (In a multigraph,
multiple edges are allowed between a pair of nodes; in a
simple graph they are not.) But they do not mention that the
algorithm of Newmanet al. does not generate multigraphs
with prescribed degrees uniformly at random, and the algo-
rithm of Milo et al. does not generate simple graphs with
prescribed degrees uniformly at random[5].

The stub-pairing algorithm given in Newmanet al. pro-
ceeds as follows:(1) Each nodei in the graph is givenj i
inward-pointing edge stubs(in-stubs) and ki outward-
pointing edge stubs(out-stubs), where j i andki are the pre-
scribed in- and out-degrees of nodei. (2) Each out-stub is
randomly paired with a distinct in-stub to produce a directed
graph. Newmanet al. make no mention of what to do if the
resulting graph has edges from a node to itself(self-loops) or
multiple edges from one node to another(multiedges). It is
possible that they intended to allow their construction to pro-
duce graphs with self-loops and multiedges, since the only
restriction they note for the prescribed degrees is that the
sum of the out-degrees must be equal to the sum of the
in-degrees.(There are additional constraints on degrees of
graphs with no self-loops or multiedges[6–8].) But this al-
gorithm does not generate multigraphs with prescribed de-
grees uniformly (regardless of whether one allows self-
loops)—it essentially generates directed “configurations”[9]
uniformly at random, but(as has already been noted for both
directed and undirected graphs[10–12]) a graph with multi-
edges has fewer configurations as preimages than a simple
graph, by a factor ofk! for eachk-fold multiedge. Thus, there
can be arbitrarily large deviations from uniformity in the
generation of multigraphs.(Newmanet al. do not explicitly
claim that this algorithm uniformly generates directed graphs

with prescribed degrees, but they do make this claim for an
analogous algorithm for undirected graphs, in which the
same caveats apply[11,12].) Or, perhaps Newmanet al. had
in mind an implicit third step:(3) If the resulting graph con-
tains any self-loops or multiedges, it is rejected; otherwise, it
is accepted. In this case, the algorithm does generate simple
graphs with the prescribed degrees uniformly, but the accep-
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FIG. 1. Shown are the seven graphs with out-degree sequence
(1, 1, 2, 0, 0, 0) and in-degree sequence(0, 0, 0, 1, 1, 2) for the
nodesu,v ,w,x,y,z (in that order). There are 4!=24 “configura-
tions,” or ways to pair up the four out-stubs with the four in-stubs.
The two upper graphs are each obtained from 2 of these 24 pairings,
while the five lower graphs(the simple graphs) are each obtained
from 4 of the 24 pairings. Thus while the stub-pairing algorithm of
Newmanet al. [2] generates configurations uniformly, it does not
generate graphs with multiedges allowed uniformly, as the upper
two graphs are each generated with probability 1/12 and the lower
five each with probability 1/6. This stub-pairing algorithm is uni-
form when restricted to simple graphs, however, while the modified
stub-pairing algorithm of Miloet al. [3] is not. In this example, the
algorithm of Milo et al. generates the leftmost simple graph with
probability 1/6=0.167, and each of the other four simple graphs
with probability 157/864=0.182.(With probability 23/216=0.106
the algorithm reaches a dead end.) These numbers were calculated
exactly, by considering all possible orders in which random stub
pairs can be selected, but the same effect can be seen numerically
by running the algorithm of Miloet al. many times. Note that,
unlike the leftmost simple graph, the other four simple graphs can
each be converted to a graph with a multiedge by replacing some
pair of edgesa→b andc→d with the paira→d andc→b. (Note
also that, while the top two graphs are isomorphic, as are the four
rightmost simple graphs, the goal throughout this comment is to
uniformly generate randomlabeled graphs with prescribed
degrees.)
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tance rate might be too small for the algorithm to be practi-
cal.

In what may have been an attempt to increase the accep-
tance rate when generating simple graphs, Miloet al. ([3],
supplementary web material) modified the algorithm of
Newmanet al. slightly. Instead of pairing up all the in- and
out-stubs at once, and then rejecting the graph if it is not
simple, Milo et al. take an incremental approach in which
one stub pair is chosen at a time; if the addition of the edge
between these stubs would create a self-loop or multiedge, a
new stub pair is chosen; otherwise, the edge is added to the
graph. If at some stage there is no stub pair that can be added
without creating a multiedge or self-loop, the partial graph is
rejected and the process is started from scratch. The ap-
proach of Newmanet al. can be recast as an incremental
algorithm, but one in which a partial graph is rejected as
soon asthe firststub pair is chosen that would create a self-
loop or multiedge. Because the modified algorithm of Milo
et al. does extra exploration in the vicinity of nonsimple
partial graphs, it does not generate the simple graphs with
prescribed degrees uniformly.(This bias is not mentioned in
Milo et al. [3] or in Iztkovitz et al. [1].) An example is
shown in Fig. 1[13].

It may be that the generation of nonsimple graphs in the
stub-pairing algorithm was inconsequential for the purposes
of Newmanet al. [2], as asymptotic properties of simple
graphs can often be inferred from asymptotic properties of

configurations, particularly when the degrees of the nodes do
not grow too fast as the number of nodes increases(e.g.
[9–11,14,15]).

Likewise, it may be that the bias in the modified stub-
pairing algorithm was inconsequential for the particular
graphs considered by Miloet al. [3]; they report that the
same “network motifs” were identified as statistically signifi-
cant when using a Markov chain Monte Carlo algorithm to
generate simple graphs with prescribed degrees[16,17]. But
it should be noted that while Kannanet al. [16] have shown
that a similar Markov chain is rapidly mixing for near-
regular degree sequences[18], they have not shown this for
scale-free degree sequences, such as those considered by
Milo et al. and Itzkovitzet al.—Milo et al. offer only that
they simulate their Markov chains “until the network is well
randomized”([3], supplementary web material).

Finally, it may be that the biases in the algorithms used by
Itzkovitz et al. [1] as a standard by which to assess their
approximate formulas were not significant for the particular
graphs they considered. But even if so, and even if no en-
tirely satisfactory algorithm is available, it should nonethe-
less be noted for the benefit of others who may wish to
generate graphs with prescribed degrees uniformly, that the
algorithm of Newmanet al. does not generate multigraphs
uniformly and the modified algorithm of Miloet al. does not
generate simple graphs uniformly.
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